Germany | Bayern

Zurück zur Suche

Internationale Partnersuche

Innovation & Technologie Angebot

Ultrafast charging Li-ion batteries based on nanostructured electrodes

Country of Origin: Spain
Reference Number: TOES20190702004
Publication Date: 2 July 2019

Summary

A non-profit Spanish research institute from Madrid has developed high capacity nanostructured anodes (1D and 2D morphologies) for ultrafast-charging Li-ion batteries.The cooperation types are license and technical cooperation agreements.

Description

Secondary lithium-ion batteries (LIBs) attracted tremendous interest due to their high energy density, good cycle life and efficiency compared to Pb-acid, Ni-MH and Ni-Cd batteries. Natural/ synthetic graphite is commonly used as anode for Li-ion batteries due to its low volume change during charge-discharge process. However, graphite anode is not suitable for a number of high energy/ power applications due to low specific capacity (< 372 mAh/g), and sluggish diffusion of Li-ions into the individual graphene layers. Lithium intercalation of graphite anodes at lower potentials (<0.3V vs Li+/Li) also causes Li-dendrite growth, and challenges the overall safety of Li-ion batteries. These drawbacks of graphite anodes triggered extensive research focused on the development of alternative high-performance anode materials.  Conventional Li-ion storage through conversion and alloying reaction of high capacity anodes (Co3O4, WO3, etc.) usually resulted in severe capacity fading due to low electronic conductivity and severe volume change leading to the pulverization of electrodes.  
In order to mitigate these issues, they have developed high capacity nanostructured anodes (1D and 2D morphologies) for ultrafast-charging Li-ion batteries. Special features of the anodes resulted in pseudocapacitive Li-ion storage (extrinsic pseudocapacitance).

They are looking for potential partners related with the energy storage sector for license and technical cooperation agreements to scaling up of the newly developed defective metal oxide based anode materials, fabrication of pouch and cylindrical type Li-ion batteries composed of the newly developed defective anodes and fabrication, validation and commercialization of the newly developed ultrafast-charging Li-ion batteries.

Advantages and Innovations

Diffusion independent nature of pseudocapacitive mechanism enables ultrafast charging (high power density) of the Li-ion battery. Synergy between the conventional Li-ion storage and pseudocapacitive process ensures high energy density. Anodes of high capacity (up to 1500 mAh/g) and ultrafast charging (up to 3s) can be engineered and synthesized through this method.

Stage Of Development

Under development/lab tested

Requested partner

The research center is looking for partners/ collaborators in the energy storage area for license and technical cooperation agreements that are capable of:

1. Scaling up of the newly developed defective metal oxide based anode materials.
2. Fabrication of pouch and cylindrical type Li-ion batteries composed of the newly developed defective anodes.
3. Fabrication, validation and commercialization of the newly developed ultrafast-charging Li-ion batteries.

Kooperationsanfrage stellen